

HYDRAITE 1st OEM Workshop Ulm, 07/03/2018

Hydrogen Quality from PEM electrolyzers

Fabien AUPRÊTRE – CTO

AREVA H2Gen overview

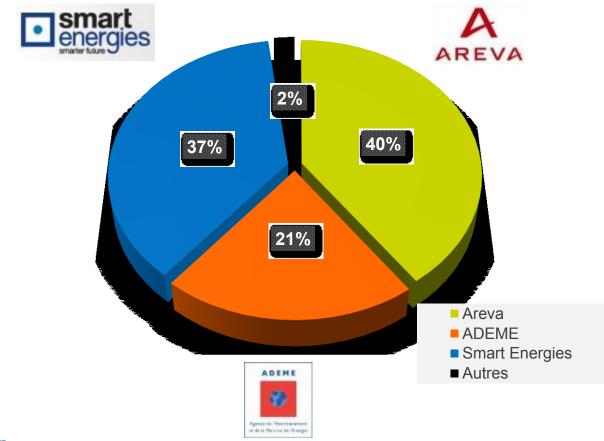
HYDROGEN JRP project

Impurities risk assessment

Electrolysis process analytical campaign

AREVA H₂Gen company overview

And venture capital funds from the French State



HYDRAITE 1st OEM Workshop - 07/03/2018 - Ulm

Capital structure

3 main shareholders:

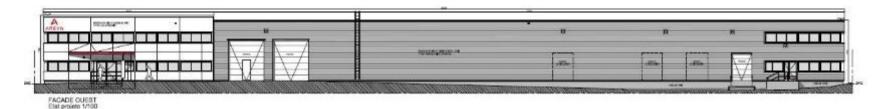
Localisation

Paris - France

- Headquarter: 20 rue Quentin Bauchard 75008 PARIS
- Production facility: 8 avenue du Parana 91940 LES ULIS

One subsidiary: AREVA H2Gen GmbH (Carsten Krause)

Worldwide network of partners


- 🔶 UK
- 🔶 China
- Egypt
- 🔶 India
- Korea
- Viet nam
- 🔶 Turkey
- ...

Factory

Overall area 2500 m²

Tertiary sector (offices):

• 600 m²

Production area :

- 1 500 m²
- Leverage capability 20 T

Production capacity :

 24 to 36 electrolysers a year

Laboratories :

- 500 m²
- 10 test benches

3 Million € CAPEX

Product line

A commercial product line from 5 to 120 Nm³/h at 15 Bar and up to 240 Nm³/h at 35 Bar

Customs solutions multi MW projects :

- **Grid balancing services**
- **Renewable hydrogen for petro-chemicals**

- Duration: 36 months, start date: 1 June 2016
- Consortium: 5 National Metrology Institutes
 5 key industrial and research partners in fuel cells, storage devices and hydrogen-related technologies
- Coordinator: LNE

• 2 collaborators

Hydrågen

The JRP *Hydrogen* aims at feeding the revision of two ISO standards: <u>ISO 14687-2</u> and <u>ISO 16111</u> standards under the direct responsibility of ISO TC 197 "Hydrogen technologies"

ISO 14687-2 : 2012 Hydrogen fuel – Product specification – Part 2: Proton exchange membrane (PEM) fuel cell applications for road vehicles at a Committee Draft (CD) stage ISO 16111 : 2008

Developing transportable gas storage devices - Hydrogen absorbed in reversible metal hydride at a Draft International Standard (DIS) stage

Component	ISO standard target (µmol/mol)
Water (H ₂ O)	5
Total hydrocarbons (CH ₄ basis)	2
Oxygen (O ₂)	5
Helium (He)	300
Total Nitrogen (N_2) and Argon (Ar)	100
Carbon dioxide (CO ₂)	2
Carbon monoxide (CO)	0.2
Total sulphur compounds (H ₂ S, COS , CS ₂ and mercaptans as a basis)	0. 004
Formaldehyde (HCHO)	0.01
Formic acid (HCOOH)	0.2
Ammonia (NH₃)	0.1
Total halogenated compounds (HBr, HCl, Cl ₂ or organic halides) NTE 1st OEM Workshop - 07/03/2018	0.05

Hydrågen

 Task 1.1: Assessment of probability of impurities existing in real samples of hydrogen

Objectives:

- assessment of the possible impurities that could be produced at the different stages of the hydrogen production process;
- provide the overall probability of these impurities being present in the end-product hydrogen (following purification steps);
- 3 processes: steam methane reforming, electrolysis and chlor-alkali processes.

 Task 1.2: Assessment of impact of impurities to fuel cell system
 Objectives:

 assess the impact of multiple impurities in hydrogen on fuel cells. 1- Assessment of the presence of impurities in the PEM electrolysis process by production process risk assessment

- Electrolysis process analytical campaign

Task 1.3: Risk assessment

Objectives:

perform a risk assessment of impurities in fuel cell hydrogen.

Objective:

Evaluation of the risk not to respect the quality requirement using PEM electrolyser in a HRS

Evaluation of measurement to implement quality assurance of HRS

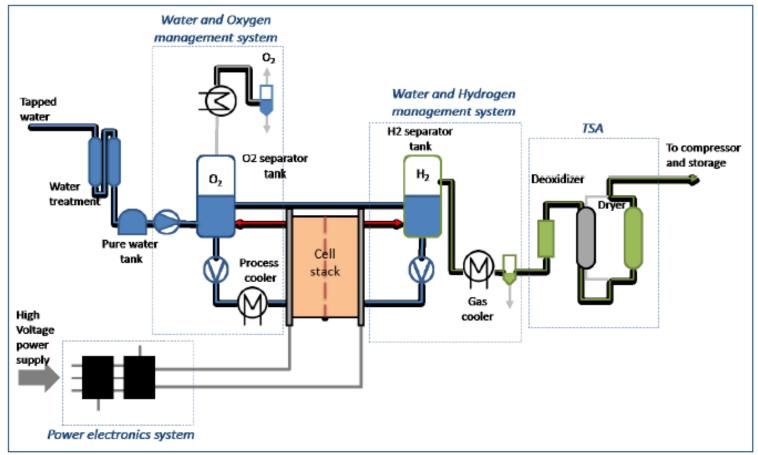
AIR LIQUIDE risk assessment methodology according to ISO:IEC Guide 73

3 fundamental questions:

- What might go wrong: which event can cause the impurities to be above the threshold value?
- What is the likelihood (probability of occurrence expressed relative to the number of refueling events) that impurities can be above the threshold value?
- What are the consequences (severity) for the fuel cell car?

Table 1: Definition of occurrence classes						
OCCURRENCE CLASS NAME CLASS		OCCURRENCE OR FREQUENCY	OCCURRENCE OR FREQUENCY			
0	Very unlikely (Practically impossible)	Contaminant above threshold never been onserved for this type of source in the industry	Never			
1	Very rare	Heard in the Industry for the type of source/ Supply chain considered	1 per 1 000 000 refueling			
2	Rare	Has happened more than once/year in the Industry	1 per 100 000 refueling			
3	Possible	Has happened repeatedly for this type of source at a specific location	1 out of 10 000 refueling			
4	Frequent	Happens on a regular basis	Often			

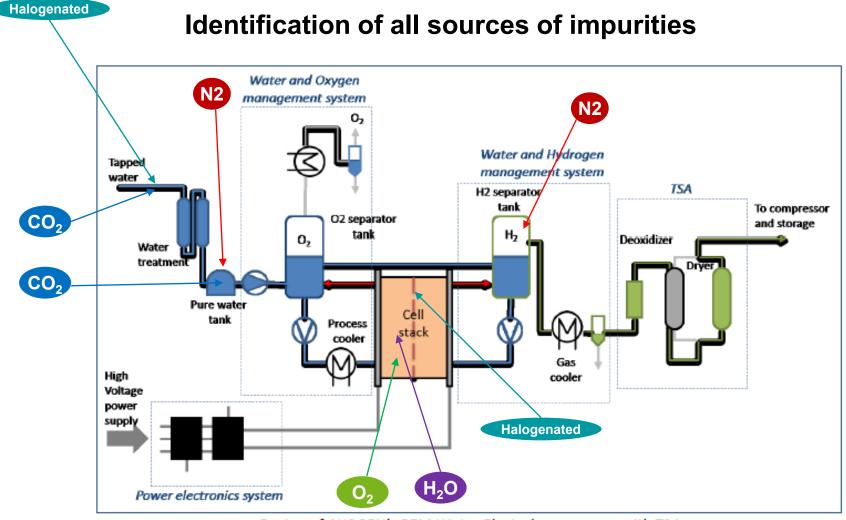
AREVA H₂Gen


Table 2: Definition of severity classes							
SEVERITY	FCEV Performance		Impact categories				
CLASS	impact or damage	Performance impact	hardware impact temporary	Hardware impact permanent			
0	No impact	No	No	No			
1	Minor impact temporary loss of power No impact on hardware Car still operates	Yes	No	No			
2	Reversible damage Requires specific procedure, light maintenance. Car still operates.	Yes or No	Yes	No			
3	Reversible damage Requires specific procedure and immediate maintenance. Gradual power loss that does not compromises	Yes	Yes	No			
4	Irreversible damage Requires major repair (e.g. stack change). Power loss or Car Stop that compromises safety	Yes	Yes	Yes			

Severity 0 1 2 3 4 4 3 Occurrence As the combined 2 probabilities of occurrence along 1 the whole supply chain 0 Unacceptable risk ; additionnal control Further investigations are needed; existing Acceptable risk area Existing controls Key barriers or control may not be enough acceptable HYDRAITE 0<mark>7/03/2018 - Ulm</mark> Em rrontonop

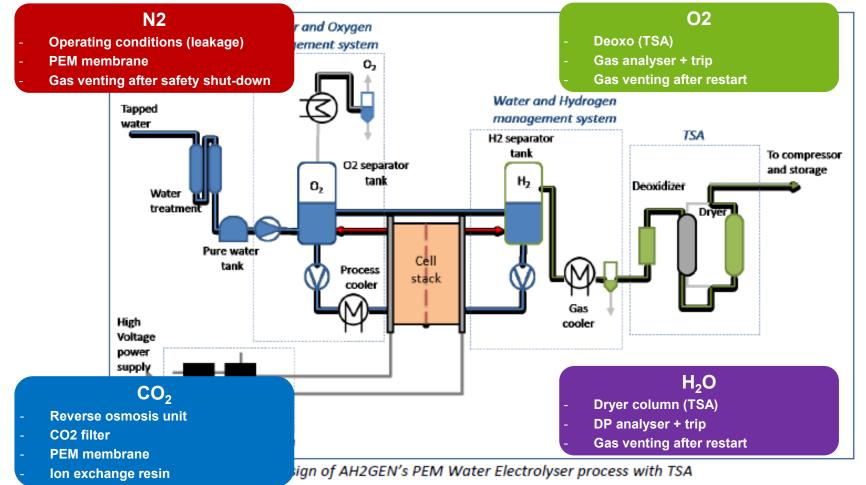
PEM electrolysis + TSA H2 purification

AREVA


Design of AH2GEN's PEM Water Electrolyser process with TSA

General classification of impurities for PEM electrolysis + H2 purification

Probability of presence of impurity	Impurity
Frequent	O ₂ , H ₂ O
Possible	N2
Rare	
Very Rare	CO ₂
Unlikely	He, Ar, CO, CH ₄ , sulfur
	compounds, ammonia, THC
	(except methane),
	formaldehyde, formic acid,
	Halogenated compounds



AREVA

Design of AH2GEN's PEM Water Electrolyser process with TSA

HYDRAITE 1st OEM Workshop - 07/03/2018 - Ulm

Identification of all existing barriers

Occurrence class for each impurities

- Occurrence class 4 (highest probability) :
- Occurrence class 3 :
- Occurrence class 2: N2, O2, H2O
- Occurrence class 1: CO2
- Occurrence class 0 (never observed): Ar, CO, CH4, He, halogenated products, formaldehyde, formic acid, THC, ammonia, sulfur compounds

			Tuble J. I	lisk ussessiller	it tuble joi PE	IVI VVE TISA					
	Contaminant	Thresold [µmol/mol	Possible cause for the source studied		Existing barrier			ł	P	5	с
			Air intake into pure water tank at anodic side during normal operation	Operating conditions applied in anodic separator tank	PEM membrane (low cross over through the membrane)			0			
	Inert gas: N2	100	N2 use for venting during emergency shut down and/or maintenance	Gas production temporary vented after restart for certain period of time (factory setting)				2	2	1	
			Leakage of H2 inerting valve (N2 used as inerting gas)	H2 operating pressure > N2 pressure supply				1			
			Leakage of pneumatic valves (N2 used as actionning gas)	HE PRESSIE SUPPLY				1			
	Inert gas: Ar	100	Not expected to be present.					0	0	1	
	Oxygen	5	O2 normally generated at the anodic side of cell stack and O2 cross over through the PEM membrane TSA malfunction	Deoxo of TSA Temperature overshoot if O2 content too high. Temperature measurement + trip T*C > 50°C	Analysis + trip at xx ppm at TSA outlet xx < 5 ppm	Gas production temporary vented after restart for certain period of time (factory setting)		2	2	0	
			from tap water at anodic side	Reverse osmosis purification unit	anodic separator tank	Ion exchange resin in closed water loop	PEM membrane (low cross over through the membrane)	1			
	Carbon dioxide	2	from air into PWT at anodic side	CO2 filter on pure water tank air intake	anodic separator tank	Ion exchange resin in closed water loop	PEM membrane (low cross over through the membrane)	1	1	1	
	Carbon monoxide	0.2	Not expected to be present.					0	0	2	
	Methane (CH4)	100	Not expected to be present.					0	0	1	
(Water	5	reactant> permeation through PEM membrane due to electro-osmosis + H2 water saturated at 60°C TSA malfunction	TSA dryer	DP Analysis + trip at xx ppm at TSA outlet xx < 5 ppm	Gas production temporary vented after restart for certain period of time (factory setting)		2	2	4	
	Total sulphur compounds	0.004	Materials gaskets, valve seats releasing ppb level of sulfur compound	Material specifications				0	0	4	
	Ammonia	0.1	from tap water at anodic side	Reverse osmosis purification unit	PEM membrane (no transfer through the membrane)			0	0	4	
	Total hydrocarbons	2	Not expected to be present.					0	0	4	
	Formaldehyde	0.01	Not expected to be present.					0	0	2	
₂ G	Formic acid	0.2	Not expected to be present.					0	0	2	
2	Helium	300	Not expected to be present.					0	0	0	
				Prior Transition (o						

TE-1st OEM Workshop - 07/03/2018 - UIm

Halogenated compounds

Table 5: Risk assessment table for PEM WE +TSA

0 0

4

Step 1: Hydrogen production by PEM WE + TSA H2 purification

- Production at steady state operation (before and after gas purification)
- Gas sampling in pressure cylinders: 3 different samples
- Send cylinders to partner

Step 2: Gas samples analysis (13 parameters of ISO 14687-2:2012 except particulates)

- NPL (UK): H₂O, CO₂, CO, total hydrocarbons, total sulphur compounds
- VSL (Netherland): formaldehyde, formic acid, HCI for the total halogenated compounds, ammonia
- CEM (Spain): O_2 , Ar, N_2 , He
- RISE (Sweden): N₂, CO₂, He

- Ulm

ELYTE E12-15 PEM electrolyzer

- H2 flow rate: 12 Nm³/h
- Operating pressure:
 - ♦ H₂: 15 bar
 - O₂: 14 bar
- Operating temperature: 60°C
- TSA purification unit
 - ♦ H₂: 99,998%
 - O₂ < 10 ppm
 - ▶ H₂O < 10 ppm

Results with expanded uncertainty (k=2) Compounds Unit Sample 4-1 Sample 4-2 NMIs < 0.01 NPL µmol/mol < 0.01 CO, < 5 < 5 SP µmol/mol 0.240 ± 0.012 0.221 ± 0.011 CO, µmol/mol NPL µmol/mol 0.091 ± 0.007 0.086 ± 0.008 NPL Non methane hydrocarbons < 0.01 < 0.01 NPL µmol/mol H_2O > 100 > 100 NPL µmol/mol Total sulphur compounds µmol/mol < 0.0036 < 0.0036 NPL umol/mol Not analysed Not analysed CEM µmol/mol < 25 < 30 SP µmol/mol 20.9 ± 3.0 23.3 + 3.8NPL < 90 < 130 SP µmol/mol µmol/mol Not analysed Not analysed CEM µmol/mol < 1.2 < 1.2 NPL Not analysed CEM µmol/mol Not analysed µmol/mol < 0.5 < 0.5 NPL **Total halogenated (HCI)** VSL µmol/mol CH2O µmol/mol VSL µmol/mol VSL NH3 µmol/mol VSL µmol/mol < DL < DL CEM

AREVA H₂Gen

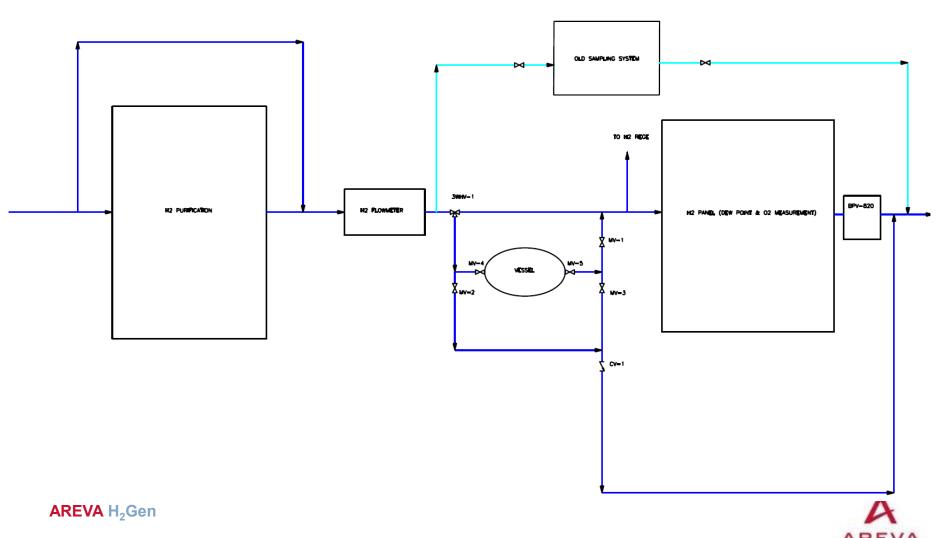
Samples 1 to 3 : before H2 purification unit

Water saturated samples (DP= 7°C / 15 bar)

Low O₂ content (stability?)

HYDRAITE 1st OEM Workshop - 07/03/2018 - UIm

Samples 4 to 6 : after TSA purification unit


		Results with expanded uncertainty (<i>k</i> =2)				
Compounds	Unit	AREVA S3-1	AREVA S3-2	AREVA S4-1		
СО	µmol/mol	< 0.02	< 0.02	< 0.02		
CO2	µmol/mol	< 0.01	< 0.01	< 0.01		
CH ₄	µmol/mol	< 0.01	< 0.01	< 0.01		
Non methane hydrocarbons	µmol/mol	0.156 ± 0.030	0.126 ± 0.026	0.111 ± 0.024		
H ₂ O	µmol/mol	> 250	> 250	> 250		
Total sulphur compounds	µmol/mol	< 0.0030	< 0.0030	< 0.0030		
O ₂	µmol/mol	1.39 ± 0.36	< 0.5	1.59 ± 0.45		
N ₂	µmol/mol	1.51 ± 0.2	< 1.0	1.86 ± 0.2		
Ar	µmol/mol	< 0.5	< 0.5	< 0.5		

O₂ content in accordance with specification

High water content not expected

Probleme with sampling device

forward-looking energy

HYDRAITE 1st OEM Workshop - 07/03/2018 - Ulm

Samples 7 to 9 : after TSA purification unit

		Results with uncertair		
Compounds	Unit	Sample 4-1	Sample 4-2	Sample 3
со	µmol/mol	< 0.02	< 0.02	< 0.02
CO2	µmol/mol	< 5	n.a.	< 5
CO2	µmol/mol	< 0.01	< 0.01	< 0.01
CH₄	µmol/mol	< 0.01	< 0.01	< 0.01
Non methane hydrocarbons	µmol/mol	0.156 ± 0.030	0.126 ± 0.026	0.111 ± 0.024
H₂O	µmol/mol	< 0.8	< 1.2	< 3
Total sulphur compounds	µmol/mol	< 0.0030	< 0.0030	< 0.0030
O ₂	µmol/mol	< 5	n.m.	< 5
O ₂ + Ar	µmol/mol	< 25	n.a.	< 25
O ₂	µmol/mol	1.39 ± 0.36	< 0.5	1.59 ± 0.45
N ₂	µmol/mol	< 100	n.a.	< 100
N ₂	µmol/mol	< 80	n.m.	n.m.
N ₂	µmol/mol	1.51 ± 0.2	< 1.0	1.86 ± 0.2
Ar	µmol/mol	< 80	n.m.	n.m.
Ar	µmol/mol	< 0.5	< 0.5	< 0.5
Total halogenated (HCI)	µmol/mol	n.a.	< 0.005	< 0.005
CH2O	µmol/mol	< 0.005	< 0.005	< 0 .005
CH2O2	µmol/mol	< 0.1	< 0.1	< 0.1
NH3	µmol/mol	n.a.	n.a.	n.a.
Не	µmol/mol HY	∕DRAITE 1st	OEM Works	< 9 hop - 07/03/2

- O₂ content in accordance with specification < 5 ppm</p>
- H₂O content in accordance with specification < 2 ppm</p>

Conclusion

Risk assessment :

- WE process \rightarrow 2 mains critical impurities
- H₂O main critical impurity

Test campaign :

- PEM WE electrolyzer + TSA purification unit comply with purity requirement
- Gas tightness of sampling device and cylinders

Sampling at steady state operation BUT what about transient operation for grid services or wind/solar power supply?

