

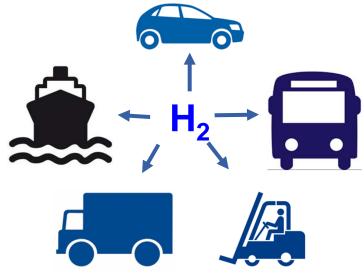
HYDRAITE 1st OEM Workshop Ulm, 07/03/2018

Quality Assurance to ensure H_2 quality at HRS

Martine Carré

THIS DOCUME	NT IS •Public	I AIR L	LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
1	Date 2018-03-07		Quality assurance to ensure H2 quality - Air Liquide	INDUSTR
	Martine Carré- Scientific dire	ctor – Air Liquide R&D	D	MERCHA

- 1. Regulation
- 2. Cost of H₂ analysis
- 3. Quality assurance
- 4. Example for SMR source
- 5. Conclusion



THIS DO	OCUME	ENT · IS · Public · · · · · · · · · · · · · · · · · · ·	ORLD ·LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH.	
	1	Date 2018-03-07	Quality assurance to ensure H2 quality - Air Liquide	INDU
, Z		. Martine Carré- Scientific director. – Air Liquide R&D		MER

1- Regulation

- Alternative Fuel Infrastructure European Directive (AFI) is applicable since January 2018
- Each European country has to translate this directive in national regulation
- H2 quality for fuel cell vehicles shall be in agreement with ISO 14687-2 until EN 17124 is published
- EN 17124: Hydrogen fuel Product specification and quality assurance – Proton exchange membrane (PEM) fuel cell applications for road vehicles will be published by May - June 2018

THIS DOCUM	ENT IS •Public	I AIR LIQUIDE, TH	IE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
1	Date 2018-03-07		Quality assurance to ensure H2 quality - Air Liquide	INDUSTRIAL
	Martine Carré- Scientific dire	ctor – Air Liquide R&D		MERCHANT

1- Regulation

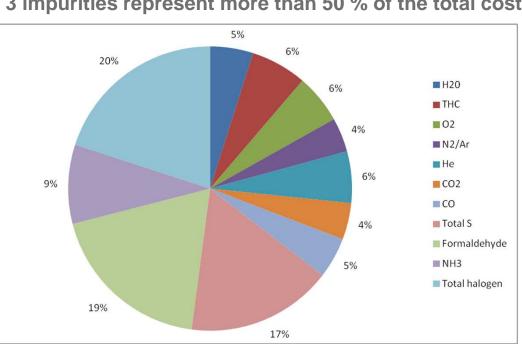
creative oxygen	Component	ISO 14687 -2 μmol/mol	EN 17124 µmol/mol
	Helium	300	300
	Nitrogen	100	300
	Argon	100	300
	Methane	/	100
	Oxygen	5	5
	Carbon dioxide	2	2
	Carbon monoxide	0.2	0.2
	Water	5	5
	Total Hydrocarbons	2	2
	Total Sulfured compounds	0.004	0.004
	Ammonia	0.1	0.1
	Formaldehyde	0.01	0.2
	Formic acid	0.2	0.2
DOCUMENT IS •Public	Total halogenated compounds	0.05	0.05
Date 2018-03-07 Martine Carré- Scier	ntific director – Air Liquide R&D	llity assurance to ensure H2 qual	÷ •

2 – Cost of analysis

USTRIAL

■ Based on the different laboratories able to analyse H₂ to the ISO specifications the cost is :

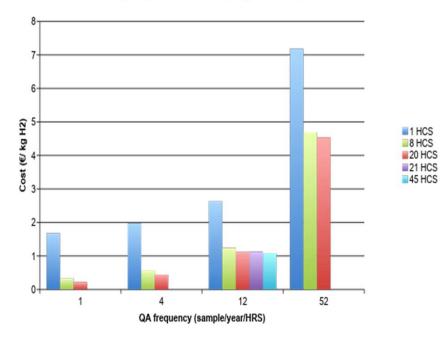
Between 6500 € and 11 000 € for one sample


❑Cost for sampling could be added also (around 4000 €):
 ❑Man power
 ❑Sampling device cost
 ❑Transport from HRS to laboratory

No analytical service lab is available today in Europe

THIS DOC	CUME	NT IS •Public I	AIR LIQUIDE, THE	WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
	1	Date 2018-03-07		Quality assurance to ensure H2 quality - Air Liquide	INDU
		Martine Carré- Scientific directo	or – Air Liquide R&D		MER

2 – Cost of analysis



Repartition per impurities 3 impurities represent more than 50 % of the total cost

THIS DOCUMENT IS • Public	I AI	R LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
Date 2018-03-07		Quality assurance to ensure H2 quality - Air Liquide	INDUSTRIAL
Martine Carré- Scien	tific director – Air Liquide R	&D	MERCHANT

QA cost vs frequency and HRS nber (80 kg H2 / HRS)

2 – Cost of analysis

- QA cost is impacted by
 - Number of HRS and volume of H2 per HRS
 - Number of analysis per year and per HRS (QA frequency)
 - The number and type of elements to analyse
- Maintenance cost & CAPEX lower with high number of HCS and independent of the QA frequency
- Labour and other running costs for sampling and analysis is the most contributing part of the total QA cost (above 8 HRS)

THIS DOCUMENT IS •Public I AIR LIQUIDE, THE W	ORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
Date 2018-03-07	Quality assurance to ensure H2 quality - Air Liquide	INDUSTRIAL
Martine Carré- Scientific director – Air Liquide R&D		MERCHANT

• FCEVs:

- Make sure the H2 supplied will not damage the vehicle or affect its performance
- H2 providers:
 - Make sure the required quality can be guaranteed, at an acceptable cost.
 - → Define a QA scheme acceptable by all parties:
 - Use the risk assessment for quality assurance of H2
 - According to ISO:IEC Guide 73 the definition of risk assessment is Combination of the probability of an event and its consequences

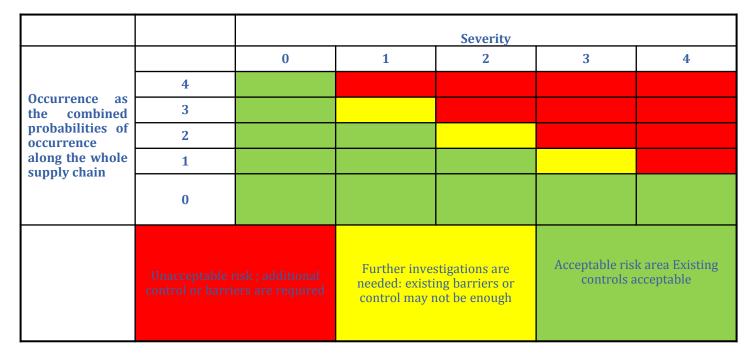
THIS DOC	UMENT IS •Public	I AIR LIQUIDE, THE	WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
1	Date 2018-03-07		Quality assurance to ensure H2 quality - Air Liquide	INDUSTRIAL
	Martine Carré- Scientifi	c director – Air Liquide R&D		MERCHANT

- Event : Be above the threshold value defined by ISO 14687-2 (for each impurity)
- probability of occurrence of this event for a given supply chain (production mode+ delivery + HRS)

Occurrence class	Class name	Occurrence or frequency	Occurrence or frequency
0	Very unlikely (Practically impossible)	Contaminant above threshold never been observed for this type of source in the industry	Never
1	Very rare	Known to occur in the Industry for the type of source/ Supply chain considered	1 per 1 000 000 refueling
2	Rare	Has happened more than once/year in the Industry	1 per 100 000 refueling
3	Possible	Has happened repeatedly for this type of source at a specific location	1 out of 10 000 refueling
4	Frequent	Happens on a regular basis	Often

Table 2 — Occurrence classes for an impurity (EN 17124)

THIS DOCI	JMENT IS •Public	I AIR LIQUID	DE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
	Date 2018-03-07		Quality assurance to ensure H2 quality - Air Liquide	INDUSTRIAL
	Martine Carré- Scientil	fic director – Air Liquide R&D		MERCHANT


• Evaluation of severity (risk) : level of damage for the vehicle (table 3 EN 17124)

Severity class	FCEV Performance impact or damage	Impact categories			
		Performance impact	Hardware impact temporary	Hardware impact permanent	
0	 No impact 	No	No	No	
1	 Minor impact Temporary loss of power No impact on hardware Car still operates 	Yes	No	No	
2	 Reversible damage Requires specific light maintenance procedure , Car still operates 	Yes or No	Yes	No	
3	 Reversible damage Requires specific immediate maintenance procedure . Gradual power loss that does not compromise safety 	Yes	Yes	No	
4a	 Irreversible damage Requires major repair (e.g. stack change) Power loss or Car Stop that compromises safety 	Yes	Yes	Yes or No	
a Any damage, wh as <u>1, 2 or</u> 3.	ether permanent or non-permanent, which compromises safety will be c	ategorized as 4, otherw	ise non-permanent dama	age will be categorized	

THIS DOCU	IMENT IS •Public	AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
1	Date 2018-03-07	Quality assurance to ensure H2 quality - Air Liquide	INDUSTRIAL
	Martine Carré- Scientific director – Air Liquid	de R&D	MERCHANT

\rightarrow Acceptability table (table 5 of EN 17124)

THIS DOCUMENT IS •Public	I AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES	S FOR INDUSTRY AND HEALTH
Date 2018-03-07	↓ Quality assurance to ensure H2 quality - A	ir Liquide INDUSTRIAL
Martine Carré- Scie	entific director – Air Liquide R&D	MERCHANT

• Production site	• Transport	• Point of use
• SMR*	• GH2	Automotive and
• Electrolysis	• LH2	• Stationnary
	Purity analysis	applications
THIS DOCUMENT IS •Public I AIR LI	QUIDE, THE WORLD LEADER IN GASES, TECHNOLOGI	

- I -	Date 2018-03-07	Quality assurance to ensure H2 quality - Air Liquide	1	INDUSTRIAL
	Martine Carré- Scientific director – Air Liquide R&D		1	MERCHANT

- Step 1 : evaluation of probability of occurrence for (done for each facility by a team of experts or people having the knowledge of each part of process):
 - source of H2 production : SMR
 - delivery mode of H2 : pipeline
 - Hydrogen Refueling Station
- Step 2: Combined with defined severity impact on vehicle :
- Step 3: Establish the acceptability level for this specific case
- Step 4.1: define the barrier to reduce the risk level to acceptable level
- Step 4.2: define the critical impurities to follow according to the results of the risk assessment

THIS DOCL	JMENT IS •Public	I AIR	R LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
1	Date 2018-03-07	7	Quality assurance to ensure H2 quality - Air Liquide	INDU
	Martine Carré- So	cientific director – Air Liquide R8	۶D کې	MERO

	ISO spec		ISO spec Supply Chain			~	æ			Re	sidu	
	Contaminant	Threshold	Production SM R	Pipeline Distribution	HRS	Compounded probability	Severity	Criticality	Additional risk reduction measures Severity reduction measures	t.	P	s
	Inert gases : N2	100	з	1	2	3	1		Systematic N2 analysis after shutdown before resuming operation Or specific purging procedure		1	1
	Inert Gas Ar	100	2	٥	٥	2	1				2	1
	Oxygen	5	٥	1	2	2	0				2	a
	Carbon dioxide	2	٥	٥	٥	0	1				a	1
	Carbon monoxide	0,2	4	a	٥	4	2		CO adsorber at HRS design margin 100% + Operation procedure for replacement when H2 quantity punified = 50% of design capacity.		1	2
	Methane (CH4)	100	2	٥	٥	2	1				2	1
	Water	5	a	a	1	1	4		Check water at commissioning and afer maintenance imoling opening of wessels or piping. Measurement shall be done at appropriate location downstream of the considered		a	4
	Total sulphured components	0,004	٥	٥	1	1	4		Check sulfurs at commissioning and after maintenance involving parts modification (piping, valves, seals, gaskets). Not required for part replaced by identical component.		٥	4
	Ammonia	0,1	٥	a	٥	0	4				٥	4
	Total hydrocarbons	2	٥	٥	2	2	4		Oil/grease cleaning at commissioning and atter maintenance. Compressor surveillance depending on compressor technology (coalescing filter?) THC analysis or commissioning and atter maintenance		a	4
	Formaldehyde	0,01	1	٥	٥	1	2				1	2
	Formic acid	0,2	a	٥	٥	0	2				٥	2
	Halogenated compounds	0,05	a	٥	1	1	4		Halogenated analysis at commissioning (species must be defined) or afer maintenance		٥	4
IIS DOC	Helium UMENT IS •Public	300	a	٥	٥	0	1		.D LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALT	Н	٥	1
	Date 2018-03- Martine Carré-		c direct	or – Air I	Liquide	R&D			Quality assurance to ensure H2 quality - Air Liquide	IND ME		

□ When the result is green, the control of this impurity is acceptable. No additional barrier is necessary and this impurity has no reason to be controlled at the HRS nozzle.

□ When the result is yellow, which is the case for nitrogen, the conclusion is to further investigate the means to decrease occurrence probability:

- In addition of the existing analysis at SMR plant, it is necessary to measure N2 at the commissioning of the HRS and after each maintenance where some parts of the system are open to air.

- Or applying specific purge procedure at the HRS which guarantees to reach a value within specification.

THIS DOCU	MENT IS •Public	I AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
1	Date 2018-03-07	Quality assurance to ensure H2 quality - Air Liquide	INDUSTRIAL
	Martine Carré- Scientific direc	tor – Air Liquide R&D	MERCHANT

❑ When the result is red, it is necessary to reduce the probability of occurrence or to decrease the severity to bring back the risk at an acceptable limit. Additional barriers must be added. These barriers are studied case by case.

□ For CO the conclusion in this example of risk assessment may be:

- to add a purifier with proper capacity of purification and to define a strict procedure for the purifier replacement.

- Or to add a continuous analysis of CO and a shutoff valve at the inlet of the HRS (at pipeline connection)

□ For H_2O the conclusion is to measure H_2O at the commissioning of the HRS and after each maintenance involving opening of vessels or piping or replacement of one of them. This analysis could be done at low pressure to have more sensitivity.

THIS DOCUMENT IS •Public	I AIR LIQUIDE	, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY A	ND HEALTH	
Date 2018-03-07		Quality assurance to ensure H2 quality - Air Liquide		INDUSTRIAL
Martine Carré- Scientif	fic director – Air Liquide R&D			MERCHANT

٠

٠

- Duration: 36 months, start date: 1 June 2016
 - Consortium:5 National Metrology Institutes5 key industrial and research partners in fuel cells, storagedevices andhydrogen-related technologies
- Coordinator: LNE

THIS DOCUMENT IS	•Public	AIR LIQUIDE, THE WORLD LEADER IN	GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND I	HEALTH	
Date	2018-03-07	Quality ass	urance to ensure H2 quality - Air Liquide	IN	NDUSTRIAL
Mart	tine Carré- Scientific direc	or – Air Liquide R&D		M	IERCHANT

								Results wit	h expanded unce	ertainty (k=2)	
	lirlic	hiur	6			Compounds	Unit	Sample 2-1	Sample 2-2	Sample 2-3	NMIs
Air Liquide				СО	µmol/mol	< 0.01	< 0.01	< 0.01	NPL		
						CO ₂	µmol/mol	< 5	< 5	< 5	SP
						CO ₂	µmol/mol	< 0.01	< 0.01	< 0.01	NPL
						CH₄	µmol/mol	< 0.01	< 0.01	< 0.01	NPL
						CH₄	µmol/mol	~ 0.01	~ 0.01	~ 0.01	VSL
	Unit	Sample 1-1	Sample 1-2	Sample 1-3	NMIs	Non methane hydrocarbons	µmol/mol	< 0.01	< 0.01	< 0.01	NPL
lethane	µmol/mol	< 0.5	< 0.5	< 0.5	SP	H ₂ O	µmol/mol	< 0.5	< 0.5	< 0.5	NPL
2	µmol/mol	< 0.5	< 0.5	< 0.5	SP	Total sulphur compounds	µmol/mol	< 0.0036	< 0.0036	< 0.0036	NPL
ydrocarbons	pintos	.4	.4	.4	0.5	0 ₂	µmol/mol	Not measured	< 5	< 5	CEM
, 3- Iydrocarbons	µmol/mol	<1	<1	<1	SP	0 ₂	µmol/mol	< 0.5	< 0.5	< 0.5	NPL
;4-	µmol/mol	<1	<1	<1	SP	N ₂	µmol/mol	< 100	< 50	< 60	SP
ydrocarbons	μποι/ποι					N ₂	µmol/mol	Not measured	Not measured	< 80	CEM
5- Nydrocarbons	µmol/mol	<1	<1	<1	SP	N ₂	µmol/mol	< 1.2	< 1.2	< 1.2	NPL
6 – C18		<0.050	<0.050	<0.050	SP	Ar	µmol/mol	< 30	< 30	< 30	SP
	µmol/mol					Ar	µmol/mol	Not measured	Not measured	< 80	CEM
ydrocarbons						Ar	µmol/mol	< 0.5	< 0.5	< 0.5	NPL
No unexpect	ed compou	inds or C6	-C12 hydr	ocarbons		Total halogenated (HCI)	µmol/mol	< 0.005	< 0.005	< 0.005	VSL
(SP)						CH2O	µmol/mol	< 0.005	< 0.005	< 0.005	VSL
						CH2O2	µmol/mol	< 0.1	< 0.1	< 0.1	VSL
						NH3	µmol/mol	Not measured	< 0.1	< 0.1	VSL
THIS DOCU	MENT IS •Pub	lic		1	AIR L	Не	µmol/mol	Not measured	Not measured	< 50	CEM
	Date 20	18-03-07 Carré- Scie	entific direc	tor – Air Li		Quality assuran	ce to ensure	H2 quality - Air L	iquide	INDUSTRI MERCHAN	

In conclusion

☐ For commissioning : at least measure N2, CO, H2O, THC, total sulfur, and halogenated products

After maintenance: measure N2, H2O, THC

The analysis of other impurities is not necessary as soon as there is analysis of CO and N2 at production site.

THIS DOCUM	IS •Public	I AIR LIQU	IIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
1	Date 2018-03-07		Uquality assurance to ensure H2 quality - Air Liquide	INDUS
	Martine Carré- Scientif	ic director – Air Liquide R&D		MERC

5 – Conclusion

Quality Assurance is necessary to:

Reduce the cost of analytical control of Hydrogen quality

Aaintain a high level of guarantee for Hydrogen car manufacturers and users.

Improve the supply chain by addition of barriers to avoid introduction of impurities.

THIS DOCUMENT IS • Public	I AIF	R LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
Date 2018-)3-07	U Quality assurance to ensure H2 quality - Air Liquide	INDUSTRIAL
Martine Car	ré- Scientific director – Air Liquide R	&D	MERCHANT

5 – Conclusion

Analytical laboratories are necessary for :

- Making the analysis required for commissioning
- Making analysis according to the quality assurance plan
- Improve the supply chain by addition of barriers to avoid introduction of impurities.
- Building a database of analytical results according to the supply chain in order to improve the quality assurance plan and to revise the quality standards

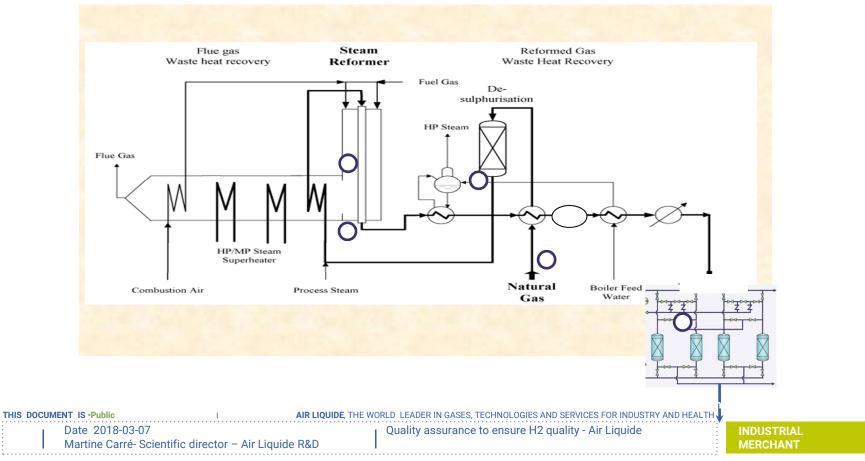
THIS DOCU	MENT IS •Public	1	AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
1	Date 2018-03-07		Uuality assurance to ensure H2 quality - Air Liquide	INDUSTRIAL
	Martine Carré- Scient	ific director - Air Liquide	e R&D	MERCHANT

5 – Conclusion

European laboratories able to analyze all impurities given in EN 17124 at lowest cost are necessary

- Air Liquide will offer new analytical service for the 13 impurities in hydrogen
- New dedicated facility for European market located near Paris.
- Global offer including sampling vessels, sampling service and analysis

THIS DOCUMENT	IS •Public I	AIR LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
D	ate 2018-03-07	Quality assurance to ensure H2 quality - Air Liquide	INDUSTRIAL
M	artine Carré- Scientific director	- Air Liquide R&D	MERCHANT



Thank you for your attention

THIS DOCUM	ENT IS •Public	I AIR L	LIQUIDE, THE WORLD LEADER IN GASES, TECHNOLOGIES AND SERVICES FOR INDUSTRY AND HEALTH	
23	Date 2018-03-07 Martine Carré- Scientific	director – Air Liquide R&I	Quality assurance to ensure H2 quality - Air Liquide	INDUSTRIAL MERCHANT

