

HYDRAITE Project introduction

Jaana Viitakangas, project coordinator, VTT 1st HYDRAITE OEM WS 7.3.2018 Ulm (DE)

<u>Hy</u>drogen <u>**D**</u>elivery <u>**R**</u>isk <u>**A**</u>ssessment and <u>**I**</u>mpurity <u>**T**</u>olerance <u>**E**</u>valuation

- 3-year EU-funded (FCH JU) project: 01/2018 12/2020, coordinated by VTT
- 6 European leading FC research centres and independent European automotive stack manufacturer
- Grant 3,5 m€
- Objective: To solve the hydrogen quality for transportation applications
 - Effects of the hydrogen supply chain derived contaminants on the fuel cell systems in automotive applications
 - Recommendations for current ISO 14687 standard
 - Establish three European laboratories, capable of measuring all of the contaminants according to ISO 14687

WP1	Project coordination	VTT
WP2	Fuel cell impurity measurements	VTT
WP3	Hydrogen fuel quality monitoring at HRS	SINTEF
WP4	Establishing expert hydrogen purity laboratories	NPL
WP5	H2 supply chain contamination risk mititgation	ZBT
WP6	Dissemination, communications and recommendations	CEA

	WP2	Fuel cell impurity measurements
		Task 2.1 Study of reversible impurities
		Task 2.2 Study of known irreversible impurities
		Task 2.3 Study of new impurities originating from HRS and H2 supply chain
		Task 2.4 Study of contaminant mixtures, including new impurities originating from HRS and supply chain
Technical		Task 2.5 Study of impurities using MEA configurations appropriate for future automotive applications
work	WP3	Hydrogen fuel quality monitoring at HRS
packages		Task 3.1 Sampling of hydrogen fuel from HRS
		Task 3.2 Online monitoring of hydrogen fuel quality
	WP4	Establishing expert hydrogen purity laboratories
		Task 4.1 Deployment of 3 laboratories with sampling and analysis capabilities for hydrogen purity
		Task 4.2 Analytical laboratory quality assurance in Europe for hydrogen purity according to ISO standards
		Task 4.3 New contaminants qualitative analysis
	WP5	H2 supply chain contamination risk mitigation
		Task 5.1 Identify the critical components and maintenance practices at HRS
		Task 5.2 Risk analysis of H2 production and purification process
		Task 5.3 Utilization and further development of quantitative HyCoRA risk assessment
		Task 5.4 Study of an on-board hydrogen purifier

HYDRAITE Deliverables

All technical deliverables are public

- Found from webpage
- D1.1 Kick off meeting and minutes
- D1.3 Annual progress report, 1st year
- D1.5 Annual progress report, 2nd year
- D2.1 A detailed research plan for Tasks 2.3 and 2.4
- D2.2 A summary report of FC measurements for the first half of the project
- D2.3 First recommendation for short stack test methods for studying hydrogen contaminants in automotive PEMFC systems
- D2.4 The effect of CO on the automotive fuel cell stacks with ultra-low PGM loading anodes and high current density operation
- D2.5 A proposal for EU harmonised test protocols for short stack test methods for studying hydrogen contaminants in automotive PEMFC systems
- D3.1 1st report on results from sampling from HRS
- D3.2 Initial report on testing of in-line analysers for hydrogen fuel quality control
- D3.3 Report on testing of in-line analysers for hydrogen fuel quality control
- D3.4 Report on development of in-line hydrogen fuel sensor based on PEM technology
- D3.5 2nd report on results from sampling from HRS
- D4.1 Report on European analytical capabilities for hydrogen purity according to ISO 14687 and quality assurance,
- D4.2 Report on the three inter-comparison results
- D4.3 Report on new contaminants in real hydrogen samples, analytical challenges, the standardisation implication and the future needs for QA in H2
- D5.1 Report on relevant data of possible new contaminants from HRS technology and operation
- D5.2 Report on quantitative risk model, including implementation of new data (interim)
- D5.3 Report on specific contaminants identified from different H2 production methods and their probability of contamination occurring
- D5.4 Report on quantitative risk model, including implementation of new data (final)
- D5.5 Report on on-board hydrogen purifier
- D6.1 Launch of public web-site, logos and templates
- D6.2 Summary of the 1st OEM workshop
- D6.7 Summary of the final international workshop
- D6.8 Compiled recommendations
- D6.9 Compilation of all OEM workshop minutes

WP2	Fuel cell impurity measurements			
	Task 2.1	Study of reversible impurities		
	Task 2.2	Study of known irreversible impurities		
	Task 2.3	Study of new impurities originating from HRS and H2 supply chain		
	Task 2.4	Study of contaminant mixtures, including new impurities originating from HRS and supply chain		
	Task 2.5	Study of impurities using MEA configurations appropriate for future automotive applications		

- To improve understanding of contaminant effects, and thus present an important base for appropriate future hydrogen standards
 - Provide recommendations for revision of ISO standards (both 14687-2:2012 and 14687-3:2014), under consideration of dynamic operating conditions, continuous full power operation (2,5 A cm-2) and future MEA configurations with anode PGM loadings of 0.02 mg cm-2 or less.
 - Provide recommendations for revision of ISO standards for contaminants introduced by HRS components and operation and operation/maintenance practices. This work includes both existing contaminants in ISO standard as well as new contaminants.
 - Develop recommendations for conducting fuel cell contaminant measurements at stack level in automotive type operation.

WP3	Hydrogen	lydrogen fuel quality monitoring at HRS		
	Task 3.1	Sampling of hydrogen fuel from HRS		
	Task 3.2	Online monitoring of hydrogen fuel quality		

- To provide technical data on fuel composition from HRS
- To identify sources to hydrogen fuel contamination from HRS components, operation and maintenance
- To evaluate existing technologies for, and to develop new methodologies for inline monitoring of hydrogen fuel quality

Sampling must be performed in collaboration with HRS operators!

- HRS maintenance schedules
- Operational events
 - \rightarrow To fix the locations & dates

WP4	Establishing expert hydrogen purity laboratories			
	Task 4.1	Deployment of 3 laboratories with sampling and analysis capabilities for hydrogen purity		
	Task 4.2	Analytical laboratory quality assurance in Europe for hydrogen purity according to ISO standards		
	Task 4.3	New contaminants qualitative analysis		

 The main objectives(s) of this WP is to remedy the lack of analytical laboratories in Europe capable of analysing all the compounds in ISO 14687. Secondly, there is the need for expert (reference) laboratories to test for compounds that may be present in hydrogen but not listed in ISO standards (e.g. ionic liquids, grease).

Information about new, possible harmful compounds is needed in order to choose suitable analytical techniques!

 E.g. metal, metal ions, ionic liquid, lubricants, cleansers, solvents, siloxanes, acids, nitrate

WP5	H2 supply chain contamination risk mitigation			
	Task 5.1	Identify the critical components and maintenance practices at HRS		
	Task 5.2	Risk analysis of H2 production and purification process		
	Task 5.3	Utilization and further development of quantitative HyCoRA risk assessment ¹		
	Task 5.4	Study of an on-board hydrogen purifier		

- Identification of the critical components and maintenance practices in the HRS that in addition to other common sources can introduce new contaminants into the hydrogen fuel
- Identification of the key impurities and their relevant mixtures of the different hydrogen production and purification processes
- Recommendations for revision of ISO standards concerning HRS components, commissioning and maintenance practices. Evaluation of future hydrogen fuel quality management costs and risks of vehicle incidents
- Identification of potential concepts of an on-board H_2 purifier Collaboration for information gathering needed!

¹ R. Tuominen, N. Helppolainen, J. Ihonen, J. Viitakangas. Probabilistic risk model for assessing hydrogen fuel contamination effects in automotive FC systems, Int J Hydrogen Energy (2018), https://authors.elsevier.com/c/1WgQL1HxM4hTUy

- Stakeholder Advisory Board Key forum to interact with HYDRAITE project
- H2 industry: Gas producers, HRS manufacturers/operators, automotive OEMs, etc.

SAB

- No legally binding role within the project
- To ease the information exchange between the project and the industry
 - First hand information
 - Possibility to affect the future project strategies

Our expectations

- Information sharing
- Guidance to our project work
- Opinions/insight

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 779475. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research.

Thank you for your attention

jaana.viitakangas@vtt.fi